Developing Commercial Scale Bioenergy Projects, Some Steps to Consider

Tad Mason, Vice President TSS Consultants www.tssconsultants.com Bioenergy and Wood Products Conference Denver, CO – March 15, 2006 Overview ***** Introduction ***** Conversion Technology **#** Initial Steps ***** Some Lessons Learned ***** Ten Basic Steps to Consider

Biomass – Organic matter in trees, agricultural crops and other living plant material.

Mapping the Territory

With grateful acknowledgements to Bob Shleser

Combustion

⇒ Most commercial biomass power applications today use direct combustion to produce steam to run turbine generators

Biomass Power Technology

Two main components:

⇒ An energy conversion system that converts biomass to useful steam, heat, or combustible gases

⇒ A prime mover that uses the steam, heat, or combustible gas to produce power

Biomass Energy – Some Rules of Thumb

- # 1 MW (1,000 kW) is enough power for 1,000 homes.
- Biomass fuel is purchased on a Bone Dry Ton basis.
- * Typical amount of biomass recovered during fuels treatment is 10-14BDT/acre.

- Typical "burn rate" is 1 BDT/MW hr.
- 10MW plant consumes 10BDT/hr.
- ** Assuming that 14 BDT/ac is recovered, a 10 MW plant would purchase biomass from the treatment of around 5,600 acres/year.

Scale of the Technology

Industrial: 5 MW+ Commercial: .5 to 4 MW Small: 100 to 499 kW Micro: 15 to 99 kW

Preliminary Feasibility Study

- * Approach Fatal Flaw Analysis (look for the deal killers).
- ***** Components:
 - Community Support
 - Fuel Resource Availability
 - Appropriate Technology Review
 - Siting Analysis
 - Environmental Review
 - Preliminary Economic Analysis

Preliminary Feasibility Study Objective

Assess the feasibility of a sustainable energy project using locally available biomass resources.

Community Support

* Best to have grass roots support. Pride of ownership carries well.

Poll key stakeholders:

Local peer groups

- Bd of Supervisors
- Chamber of Commerce
- Conservation community
- Local, State and Federal agency representatives
- Private sector resource managers, landowners

Fuel Resource Review – **Typical Fuel Types *** Woody biomass from fuels treatment/harvest activities ***** Woody biomass residuals from forest products manufacturing operations # Urban wood (C&D, trimmings) * Ag by-products (shell, prunings, pits)

Fuel Resource Review – cont.

- Sustainable long term supply located within close proximity (25 to 75 mile radius)
- Environmentally available
 - Environmentally available over the long term
- * Economically available
 - What are the costs to collect, process and transport to a facility
 - Are there competing uses for the potential fuel/feedstock
- Meets quality specifications
- * Available in quantities and from diverse sources that support project financing:
 - Minimum 10 year supply, 70% under contract
 - Quantities that are 2 3 times minimum volume for plant operation

Target Study Area – Shasta County, California

Appropriate Technology Review * Search for most appropriate technology considering project location and fuel supply Ability to convert local fuel supply into heat/power Must meet local permitting specifications ***** Technology must be proven: Commercially available Operates efficiently on available fuel supply Operates cleanly on available fuel supply

Appropriate for site and local resources

Sitting/Infrastructure Part I ***** Co-locate with existing commercial or industrial project Forest products manufacturing facility Coal fired power generation facility ***** Sites past uses consistent with biomass plant operation Abandoned forest products manufacturing site ***** Typical project requires at least 20 acre site Siting/Infrastructure Part II * Water readily available (10 + gpm min) * Location incentives – Enterprise zones * Transportation system • Highway

• Rail

Ash/Waste water disposalPublic health and safety

- Fugitive emissions
- Noise

Siting/Infrastructure Part III ***** Natural gas available ***** Air quality standards ***** Cultural resources **#** Biological resources * Power sales and interconnection Power substation nearby

Transmission/distribution available

Environmental Review & Principal Environmental Issues

- \Rightarrow Air Quality
- \Rightarrow Land Use
- ⇒ Water Use
- ⇒ Transportation
- ⇒ Visual/Aesthetics
- ⇒ Noise
- ⇒ Solid Waste Disposal

Preliminary Financial Analysis * Markets for heat and power Market values support justifies capital investment Delivered cost of fuel Operating/Maintenance costs ***** Return on investment Minimum ROI of 19% ***** Economies of scale Combustion efficiencies Labor and overhead

Cost Centers from Forest to Bus Bar = 7.6¢/kWh

Lessons Learned/Observations

- 💥 Do not over sell
- Do not set project
 scale before assessing
 fuel resource
- Expect 24 to 36 months for successful project development
- Community involvement is key

Project Development Steps Part I

- 1.Conduct preliminary feasibility study
- 2. Confirm community support
- 3.Assess fuel resource availability
- 4.Consider siting and infrastructure issues
- 5. Complete due diligence Feasibility Study

Observations on Next Steps Part II

- 6. Secure developer and /or equity partners
- 7. Secure power purchase agreement/thermal delivery agreement
- ***** 8. Secure financing
- 9. Engineer/construct project
- 10. Generate renewable energy

Contact Information * TSS Consultants * 916.638.8811 ext 112 * tmason@sbcglobal.net * WWW. TSSCONSULTANTS.COM